https://store-images.s-microsoft.com/image/apps.32362.b9e62be2-dbbd-48f5-868d-614702ec618e.8f4c2a9e-6156-4f80-b806-454260e83e4b.95368008-62f6-4be6-a0f2-3b0e578e379d

Hybrid Content Processing AI Knowledge

miftahr

Hybrid Content Processing AI Knowledge

miftahr

Content Processing AI Knowledge

  • End-to-end content pipeline – The system automatically:

    1. Ingests various formats (PDF, DOCX, images, audio).
    2. Extracts text & metadata using Azure AI Vision / Form Recognizer.
    3. Performs transformation & normalization (cleaning, language detection, summarization).
    4. Evaluates/classifies content (sentiment, topic, PII detection).
    5. Stores & indexes results into Azure Storage / Search for further consumption.
  • Hybrid AI Chat – The chatbot combines LLM (Azure OpenAI) + pipeline retrieval, enabling users to ask questions like “What’s the summary of contract X?” or “Show documents with negative sentiment.”

  • Modular handler framework – Each stage is implemented as a pluggable Python handler—just register it in the configuration.

  • Scalable microservices – Composed of three services:
    – Processor (pipeline worker)
    – API (REST/WS for Hybrid AI Chat)
    – Web (UI/visualization)
    All run on Azure Container Apps with auto-scaling based on queue load.

  • Built-in security – Azure AD authentication & use of ensure secrets are not stored in code.

  • Observability – Logs, metrics, and tracing are sent to Azure Monitor for quick detection of errors & bottlenecks.

https://store-images.s-microsoft.com/image/apps.50396.b9e62be2-dbbd-48f5-868d-614702ec618e.8f4c2a9e-6156-4f80-b806-454260e83e4b.74bdbbed-0e3b-4266-88a3-d705871f2cd3
https://store-images.s-microsoft.com/image/apps.50396.b9e62be2-dbbd-48f5-868d-614702ec618e.8f4c2a9e-6156-4f80-b806-454260e83e4b.74bdbbed-0e3b-4266-88a3-d705871f2cd3